

Inertsil Columns Maintenance & Care

Inertsil Column Check upon receipt of Column

Step 1 : Confirm Genuine supply of Inertsil C8-3 /Inertsil ODS-3 & Inertsil ODS-3V by checking LASER ETCHED serial number on the column.

Step 2: Check the column for signs of physical damage which may have occurred during shipping. Contact LCGC immediately to report any problems.

Step 3: Make sure that the column you received is the column that you ordered.

Step 4: Take note of the solvent contained in the column during shipping solvent.

(The solvent used for shipping is the same as that used as the mobile phase on the QC test chromatogram.) Before attempting to change solvents, make certain that the eluent you will be introducing into the column is COMPLETELY miscible with the eluent contained in the column, to avoid precipitation of buffer salts or other mobile phase additives.

Step 5: Test the column to verify column efficiency and back pressure (using one of the later-eluting components of the QC test sample). Contacts LCGC immediately to report any problems. This is important because the MOST COMMON complaint about HPLC columns is high back pressure. Given that the columns are all tested during QA/QC, high back pressure is almost ALWAYS the result of particulates introduced during "equilibration" or the first few sample injections.

Inertsil HPLC packings are subject to a rigorous array of QC tests in a ISO9001 compliant facility, with special emphasis on reagent purity, raw material traceability, and consistency in raw materials and finished products. A detailed analysis of all Inertsil's physical properties, chemical purity, chromatographic selectivity, and column packing efficiency is used to confirm that each lot of Inertsil is identical to all previous lots.

pH Stability

Solvent Selection

Columns last longest when they are used with benian eluents. Using eluents of high pH or low pH can dissolve silica or catalyze hydrolysis of the bonded phase. Try to stay within the pH range of 2 - 7.5 on Inertsil columns except Inertsil Sustain C18/C8/Phenyl (Which is stable within pH range 1-10.5). If you use a pH outside this range, column life might be reduced

Temperature Stability

Column Oven Temperature:

Columns last longest when they are used with Temp of helow 60 C

In-Situ Column Cleaning

Columns that become fouled over time can sometimes be rejuvenated with an aggressive rinsing sequence, as shown below. In all cases, reverse the column (e.g. attach the outlet end of the column to the pump, and pump the eluent directly into a waste reservoir) and flush the column with 50ml volumes of the indicated solvents in the indicated sequences.

If mobile phase contains a buffer, flush the column with the mobile phase MINUS the buffer first, to avoid precipitation of the buffer in the pure MeOH remaining

3.	The State Column Cicarinia (Accommended Column Temperature is at 400)						
Steps	Reverse Phase	HILIC Phase	Normal Phase	IonExchange Phase	Protei		
	CH-CN / H2O	CH2CN / 0.1% TEA		***High	CII (

1	CH₃CN / H2O = 10/90	CH ₃ CN / 0.1% TFA = 10/90	**Isopropanol	***High concentration buffer	CH ₃ CN / H ₂ O = 10/90
2	100% CH₃CN or 100% CH₃OH	0.1% TFA in 100% CH₃CN	Methylene Chloride	Distilled Water	0.1% TFA in 100% CH₃CN
3	*(0.1% TFA in 100% CH3CN)	CH₃CN / H₂O = 10/90	Hexane	100% CH₃CN or 100% CH₃OH	**Isopropanol
4	CH ₃ CN / H ₂ O = 10/90	Mobile Phase	Mobile Phase	Distilled Water	CH ₃ CN / H ₂ O = 10/90
5	Mobile Phase			Mobile Phase	Mobile Phase

- * In case the column is heavily deteriorated.
- Please be careful with the column back pressure.
- *** Use the same buffer used in the mobile phase, but with higher concentration. However the limit of the concentration shall be upto 100mM

Appendix 1 -1

Inertsil Series Shipping Solvent Information (Mobile Phase used in Column Performance Test)

As of May, 2011

* The injection volume of standard sample used in the Column Performance Test is all 1 uL for a 4.6mml.D. column * For other column internal diameter sizes, injection volumes or concentration of standard samples were adjusted proportional to column cross section

Packings Inertsil	Column Size	Mobile Phase used in Column Performance Test	Analyte used in Column Performance Test	Sample Diluting Solvent
ODS-2 ODS-3	5um ;150 x 4.6mml.D. 5um ;250 x 4.6mml.D.	CH ₃ OH / H ₂ O = 85 / 15	n-Propylbenzene (0.01 m L/mL)	CH ₃ OH / H ₂ O = 85/15
ODS-4	ODS-SP; 20mm,30mm	CH ₃ CN / H ₂ O = 50 / 50	Nonhthalana	
ODS-SP	other than those above	CH ₃ CN / H ₂ O = 65 / 35	Naphthalene (1 mg/mL)	CH ₃ CN / H ₂ O = 65/35
InertSustain C18 ODS-3V ODS-4V ODS-P ODS-EP Peptides C18 Sulfa C18 ODS-80A ODS PREP ODS PREP C8	ALL	CH ₃ CN / H ₂ O = 65 / 35	Naphthalene (1 mg/mL)	CH ₃ CN / H ₂ O = 65/35
C8-3	≧ 100mm	CH ₃ CN / H ₂ O = 65 / 35	Naphthalene (1 mg/mL)	CH ₃ CN / H ₂ O = 65/35
	< 100mm	CH ₃ CN / H ₂ O = 50 / 50		
C8-4	≧ 75mm	CH ₃ CN / H ₂ O = 65 / 35	Naphthalene	CH ₃ CN / H ₂ O = 65/35
	< 75mm	CH ₃ CN / H ₂ O = 50 / 50	(1 mg/mL)	·
C8	≧ 200mm	CH ₃ CN / H ₂ O = 65 / 35	Naphthalene	
Co	< 200mm	CH ₃ CN / H ₂ O = 50 / 50	(1 mg/mL) CH ₃ CN / H ₂ O	CH ₃ CN / H ₂ O = 65/35

Things to Follow —For Better Life of column

 \checkmark Filter Sample: Samples should be filtered through a 0.45 μ for columns having particle size 3um & above. Sample must be filtered through 0.2 μ syringe filter while using with 2um (UPLC) Use of Guard column will improve life of the column.

Filter Solvent & Buffers: Organic solvents & buffer used in the mobile phase should be filtered through 0.45 μ for the columns having particle size 3um & above . Solvents & buffers must be filtered through 0.2μ syringe filter while using with 2um (UPLC) columns.

✓ Use of Guard column will improve life of the column.

✓ Wash column thoroughly after use to remove buffers. [Ion apir buffers requires longer washing time compare to other inorganic buffers]

✓ Store the column in appropriate storage solvents

Inertsil Column Storage

COLUMN STORAGE conditions can have a profound effect on column lifetime and performance -after-storage. Before extended storage (e.g. greater than 2 days), rinse the column COMPLETELY free of eluents containing buffers, ion-pair reagents, or inorganic solutes, by flushing with 20-50 column volumes of the eluent WITHOUT the dissolved additives. Then flush the column with 5-10 column volumes of water (reverse phase columns only). Then flush the column with 20 volumes of storage solvent.

INERTSIL® HPLC Column Storage Instructions

Inertsil Phase	Short term Storage Solvent (Within a Month)	Long term Storage Solvent (More than a Month)	Shipping Solvent
Reverse Phase C18, C8, C4, Ph-3, Ph HILIC Phase Hilic (Diol), NH2, Amide Normal Phase SIL, Diol, NH2, CN	Same Organic % as Mobile Phase without additives	100% CH ₃ OH or 100% CH ₃ CN	See Appendix 1-1 &
Ionexchange Phase CX, AX, NH2	CH ₃ CN / H ₂ O = 10/90	100% CH₃OH or 100% CH₃CN	Appendix 1-2

Appendix 1 -2

Packings	Column Size	Mobile Phase used in Column Performance Test	Analyte used in Column Performance Test	Sample Diluting Solvent
Ph-3 Ph C4 WP 300C18 WP 300C8 WP 300C4 300C8	ALL	CH ₃ CN / H ₂ O = 50 / 50	Naphthalene (1 mg/mL)	CH ₃ CN / H ₂ O = 65/35
SIL-100A SIL-150A Diol WP 300SIL WP 300Diol PREP SIL	ALL	Hexane / Etnanol = 95 / 5	o-nitroanisole (0.07 v/v %)	n-Hexane 100%
CN-3 NH2	ALL	Hexane / Etnanol = 98 / 2	o-nitroanisole (0.07 v/v %)	n-Hexane 100%
	150mm , 250mm	CH ₃ CN / H ₂ O = 95 / 5	Caffeine (0.2 mg/mL)	CH₃CN 100%
HILIC	100mm,75mm	CH ₃ CN / H ₂ O = 98 / 2		
	≦ 50mm	CH₃CN 100%		
АХ	ALL	60mM KH ₂ PO ₄ (pH 3.0 , H ₃ PO ₄)	UMP (0.1 w/v %	H₂O
сх	ALL	200mM HCOONH ₄ (pH 5.0 , HCOOH)	Cytosine (0.15 mg/mL)	H₂O
MonoClad C18- HS	ALL	CH ₃ CN / H ₂ O = 60 / 40	Naphthalene (1 mg/mL)	CH ₃ CN / H ₂ O = 65/35
Inertsphere Sugar-1	150 x 4.6 mml.D.	100mM NaOH	Glucose (10 ug/mL) With ECD Betecor	2% Ethanol aq.

Things to Avoid —For Better Life of column

✓ Dropping or otherwise "shocking" columns can disrupt the column bed and cause peak splitting.

✓ Use of eluents in the pH range of conventional LC Columns 2 - 7.5 will maximize column life, though higher pH eluents have been used successfully.

✓ Opening the column

✓ Using Extreme temperatures with extreme pH*

✓ Using corrosive buffers /mobile phase

✓ Inertsustain C18 is stable for order pH range of 1-10.5

*Inertsil Columns offers lower pressure columns in the market

Hyderabad: 040-66315242 / 66315243 E-mail: hvdsales@lcacindia.com Mumbai: 022-24082070/80

E-mail: mumbai@lcgcindia.com

info@lcgcindia.com

E-mail: ahmedabad@lcacindia.com

Bangalore: 98440 21071 E-mail:bangalore@lcacindia.com

Chandigarh: 93574 48808

E-mail: goa@lcgcindia.com | Email: indore@lcgcindia.com | E-mail: delhi@lcgcindia.com | E-mail: pune@lcgcindia.com | E-mail: surat@lcgcindia.com |

Indore: 98260 84686

E-mail: kolkata@lcacindia.com